binary-zb-default
More information can be found under the keyword
binary-zb-default (binary zinc blende parameters) under the section
Keywords.
!------------------------------------------------------------!
$binary-zb-default
required !
binary-type character
required !
conduction-bands
integer
required !
conduction-band-masses
double_array
required !
conduction-band-degeneracies
integer_array required !
conduction-band-nonparabolicities
double_array
required !
band-gaps
double_array
optional !
conduction-band-energies
double_array
required !
valence-bands
integer
required !
valence-band-masses
double_array required !
valence-band-degeneracies
integer_array required !
valence-band-nonparabolicities
double_array
required !
valence-band-energies
double required ! average valence band edge energy
Ev,av
!
varshni-parameters
double_array required !
alpha [eV/K] (Gamma,L,X), beta [K]
(Gamma,L,X)
band-shift
double
required !
absolute-deformation-potential-vb
double
required !
absolute-deformation-potentials-cbs
double_array
required !
uniax-vb-deformation-potentials
double_array
required !
uniax-cb-deformation-potentials
double_array required !
!
lattice-constants
double_array
required ! [nm]
lattice-constants-temp-coeff
double_array required !
[nm/K]
!
elastic-constants
double_array
required !
piezo-electric-constants
double_array required !
!
static-dielectric-constants
double_array required !
optical-dielectric-constants
double
required !
!
Luttinger-parameters
double_array required !
6x6kp-parameters
double_array required !
8x8kp-parameters
double_array required !
!
LO-phonon-energy
double
required ! [eV]
!
number-of-minima-of-cband
integer_array required !
conduction-band-minima
double_array required !
principal-axes-cb-masses
double_array required !
!
number-of-minima-of-vband
integer_array
required !
valence-band-minima
double_array
required !
principal-axes-vb-masses
double_array required !
!
$end_binary-zb-default
required !
!------------------------------------------------------------!
Syntax
binary-type = Si-zb-default
conduction-bands = 3
total number of conduction band minima (Gamma, L, X)
conduction-band-masses = 0.156d0 0.156d0 0.156d0
! [m0] Gamma (m,m,m)
1.420d0 0.130d0 0.130d0 ! [m0] L (mlongitudinal,mtransverse,mtransverse)
0.916d0 0.190d0 0.190d0 ! [m0] X (mlongitudinal,mtransverse,mtransverse)
3 numbers per band,
ordering of numbers corresponds to band
no. 1, 2, 3 (Gamma, L, X)
conduction-band-degeneracies = 2 8 12
including spin degeneracy
conduction-band-nonparabolicities = 0d0 0d0 0d0 ! [1/eV]
Gamma, L , X
Nonparabolicity factors for the Gamma, L and X conduction bands as used in a hyperbolic dispersion k2 ~ E (1 +
aE) = E + aE2.
a = nonparabolicity [1/eV] (usually
denoted with alpha)
The energy of the
Gamma valley is assumed to be nonparabolic, spherical, and of the form
hbar2 k2 / (2 m*) = Eparabolic = Enonparabolic (1 + aEnonparabolic)
where a is given by a = (1 - m*/m0)2 / Eg.
Eparabolic is the energy of the carriers in the usual
parabolic band.
Enonparabolic is the energy of the carriers in the
nonparabolic band.
The nonparabolic band factor a can be calculated from the Kane model.
Note that this nonparabolicity correction only influences the classically
calculated electron densities.
Quantum mechanically calculated densities are unaffected.
band-gaps = 1.5d0 2.0d0 2.3d0 ! [eV]
Note that this flag is optional. It is only used if the flag use-band-gaps
= yes is used.
Energy band gaps of the three valleys (Gamma, L, X).
conduction-band-energies = 0d0 0d0 0d0
conduction band edge energies relative to a reference level (could be
vacuum) (numbering according
to cb numbering)
conduction band edge energies relative to valence band number 1 (number
corrsponds to the ordering of the entries below)
valence-bands = 3
total number of valence bands
valence-band-masses = 0.580d0 0.580d0 0.580d0
! [m0]
heavy hole
0.500d0 0.500d0 0.500d0 ! [m0]
light hole
0.300d0 0.300d0 0.300d0 ! [m0]
split-off hole
Ordering of numbers corresponds
to band no. 1, 2, 3 (heavy, light, split-off hole).
valence-band-degeneracies = 2 2 2
including spin degeneracy
valence-band-nonparabolicities = 0d0
0d0 0d0 ! [1/eV]
heavy, light, and split-off hole
see comments for conduction-band-nonparabolicities
valence-band-energies = 0.0
The valence band energies for heavy, light and split-off holes are calculated by
defining an average valence band energy Ev,av for all three bands and adding the
spin-orbit-splitting energy afterwards. The spin-orbit-splitting energy Deltaso is
defined together with the k.p parameters.
The average valence band energy Ev,av is defined on an absolute
energy scale and must take into account the valence band offsets which are
averaged over the three holes.
varshni-parameters = 0.5405d-3 0.605d-3 0.460d0
! alpha [eV/K] (Gamma, L, X) Vurgaftman
204d0 204d0
204d0 ! beta [K] (Gamma, L, X)
Vurgaftman
Temperature dependent band gaps (here: GaAs values).
More
information...
band-shift = 0d0
to adjust band alignments (should be zero in database): adds to all band
energies
absolute-deformation-potential-vb = 0d0
a_v [eV]
absolute-deformation-potentials-cbs =
-10.44d0 -2.07d0 3.35d0 ! [eV] (Gamma, L, X) (Si values)
The absolute deformation potentials for the conduction band edges are
calculated from the band gap deformation potentials (a_gap) in the following
way:
a_gap = a_c - a_v -> a_c =
a_gap + a_v
uniax-vb-deformation-potentials = 0d0
0d0
b,d [eV]
uniax-cb-deformation-potentials = 0d0
0d0 0d0
Xi_u (at minimum)
lattice-constants =
0.543d0 0.543d0 0.543d0 ! [nm] 300 K
3 positive numbers
lattice-constants-temp-coeff = 3.88d-6
3.88d-6 3.88d-6 ! [nm/K]
More
information on temperature dependent lattice constants...
piezo-electric-constants = -0.350d0 ! [C/m^2]
e14 (1st
order coefficients)
0d0 0d0 0d0
! [C/m^2] B114 B124 B156
(2nd order coefficients)
Conventionally, the sign of the piezoelectric tensor components is fixed
by assuming that the positive direction along the
- [111] direction (zincblende)
- [0001] direction (wurtzite)
goes from the cation to the anion.
elastic-constants = 1d0
1d0 1.350d0 !
c11 c12 c44 [GPa]
static-dielectric-constants = 9.28d0 9.28d0
9.28d0
Static dielectric constants. The numbers
correspond to the crystal directions (similar to lattice-constants ):
- in zinc blende: eps1 = eps2
= eps3
- in wurtzite: eps1 =
eps2 eps3
eps3 is parallel to the c direction in wurtzite.
eps1 and eps2 are perpendicular to the c direction in wurtzite.
low frequency dielectric constant
epsilon(0)
optical-dielectric-constants = 10.10d0
! high frequency dielectric constant
epsilon(infinity)
Luttinger-parameters = 6.98d0
2.06d0 2.93d0
! gamma1 gamma2 gamma3 []
Luttinger parameters for the valence band
1.72d0 0.04d0 !
kappa q []
In the database, the Luttinger parameters are defined for 6-band k.p. i.e. not for 8-band k.p.
Note: The Luttinger parameters are only used if the following
$numeric-control flag is
set:
Luttinger-parameters =
6x6kp (or)
yes
=
6x6kp-kappa
=
6x6kp-kappa-only
=
8x8kp
! [] modified Luttinger
parameters for the valence band
=
8x8kp-kappa
! [] modified Luttinger
parameters for the valence band
=
8x8kp-kappa-only ! []
modified Luttinger
parameter kappa' for the valence band
If kappa is not known it
can be approximated: kappa = - N/6 + M/3 - 1/3 . (This corresponds
to H2 = 0, i.e. N- = M and N+
= N - M .)
If gamma2 =
gamma3 , then the dispersion is isotropic (spherical
approximation).
If gamma2 =
gamma3 = 0, then the dispersion is isotropic (spherical
approximation) and parabolic.
6x6kp-parameters =
-16.22d0 -3.86d0 -17.58d0
! L M N
[hbar2/(2m0)]
0.341d0
! Deltaso (spin-orbit split-off energy) [eV]
8x8kp-parameters =
1.420d0 -3.86d0 0.056d0
! L' M'=M N'
[hbar2/(2m0)]
0.0d0 28.8d0 -2.876d0
! B [hbar2/(2m0)]
EP [eV] S []
Important: There are different definitions of the
L and M parameters available in the literature. (The
gamma s are called Luttinger parameters.)
nextnano definition: L = ( - gamma1
- 4gamma2 - 1 ) * [hbar2/(2m0)]
M = ( 2gamma2 - gamma1 - 1 ) * [hbar2/(2m0)]
alternative definition: L = ( -
gamma1 - 4gamma2 ) * [hbar2/(2m0)]
M = ( 2gamma2 - gamma1
) * [hbar2/(2m0)]
Note: The S
parameter is also defined in the literature as F
where S = 1 + 2F , e.g. I. Vurgaftman et al., JAP 89,
5815 (2001).
F = (S - 1)/2
N = N+ + N-
For 6-band k.p, one can obtain an isotropic dispersion
if N2 - (L - M)2 = 0 , i.e. N = L - M
(spherical approximation).
If L = M , and N = 0 , the dispersion is both
isotropic and parabolic.
More information
on k.p parameters...
LO-phonon-energy = 0.063d0 ! [eV]
low-temperature optical phonon energy
number-of-minima-of-cband = 1 4 6
conduction-band-minima = 0d0 0d0
0d0
0.860d0 0.860d0 0.860d0
0.860d0 0.860d0 -0.860d0
-0.860d0 0.860d0 0.860d0
-0.860d0 0.860d0 -0.860d0
0d0 0d0
1d0
1d0 0d0 0d0
0d0 1d0 0d0
0d0 0d0 -1d0
-1d0 0d0 0d0
0d0 -1d0 0d0
components of k-vector along crystal
xyz [k0] in units of
[2pi/a] where a is the lattice constant.
principal-axes-cb-masses = 1d0 0d0
0d0 !
0d0 1d0
0d0
!
0d0 0d0
1d0
!
!
1d0 -1d0
0d0 ! L1
1d0 1d0
-2d0 !
1d0 1d0
1d0
!
1d0 -1d0
0d0 ! L2
-1d0 -1d0
-2d0 !
1d0 1d0
-1d0 !
1d0 1d0 0d0
! L3
-1d0 1d0
-2d0 !
-1d0 1d0
1d0
!
1d0 1d0 0d0
! L4
1d0 -1d0 -2d0 !
-1d0 1d0
-1d0 !
!
1d0 0d0
0d0
! X1
0d0 1d0 0d0
!
0d0 0d0
1d0
!
0d0 -1d0
0d0 ! X2
0d0 0d0
-1d0
!
1d0 0d0
0d0
!
1d0 0d0
0d0
! X3
0d0 0d0 -1d0 !
0d0
1d0 0d0
!
-1d0 0d0
0d0
! X4
0d0
1d0 0d0
!
0d0 0d0
-1d0 !
0d0 1d0
0d0
! X5
0d0 0d0
-1d0 !
-1d0 0d0
0d0
!
-1d0 0d0
0d0
! X6
0d0 0d0
-1d0 !
0d0 -1d0
0d0 !
Normalization will be done internally by the
program
number-of-minima-of-vband = 1 1 1
valence-band-minima = 0d0
0d0 0d0
0d0 0d0 0d0
0d0 0d0 0d0
components of k-vector along crystal
xyz [k0]
!
principal-axes-vb-masses = 1d0 0d0
0d0
0d0 1d0 0d0
0d0 0d0 1d0
1d0 0d0 0d0
0d0 1d0 0d0
0d0 0d0 1d0
1d0 0d0 0d0
0d0 1d0 0d0
0d0 0d0 1d0
Normalization will be done internally by the
program
More information can be found under the keyword
binary-zb-default
(binary zinc blende parameters) under the section
Keywords.
|